Exp3 8
Jump to navigation
Jump to search
Description
Exp3_8 is a program from the nofib benchmark set that calculates 3^8 symbolically, using Church numbers. The source code for Version 1 is available on github
Data Structures
data Nat = Succ a | Zero; data Bool = False | True ; n1 = Succ Zero; n2 = Succ(n1); n3 = Succ(n2); n4 = Succ(n3); n5 = Succ(n4); n6 = Succ(n5); n7 = Succ(n6); n8 = Succ(n7); n9 = Succ(n8); n10 = Succ(n9);
Auxiliary Functions
put x = out (extern 0x10a1fafa) x;
Version 1 : Recursive
add x y = x y (\a -> Succ (add a y)); mul x y = y (Zero) (\a -> (add (mul x a) x)); pow x y = y (Succ Zero) (\a -> mul x (pow x a));
toInt n = n (0) (\a -> (+ 1 (toInt a)));
main = put (toInt (pow n3 n8)) True;
Version 2 : Explicit Catamorphism
fmap_nat f n = n Zero (\a -> Succ (f a )); cata f alg x = alg (f (cata f alg) x); natC z next = cata fmap_nat (\b -> b z (\a -> next a) );
pow x y = natC (Succ Zero) (mul x) y; add x y = natC y Succ x; mul x y = natC Zero (add y) x; toInt = cata fmap_nat (\x -> x 0 (+ 1)) ;
main = put (toInt (pows n3 n8)) True;
Version 3 : Mendler-style Catamorphism
natC z f = Fix (\s n -> n z (\a -> f (s a))); pow x y = natC (Succ Zero) (mul x) y; add x y = natC y Succ x; mul x y = natC Zero (add y) x; main = put (toInt (pows n3 n8)) True;
Evaluation
Reductions and Timing
Recursive | Catamorphism | Mendler-style | |
---|---|---|---|
Reductions | 16175369 | 492059 | 314921 |
Traversal steps | 40400688 | 1053012 | 692175 |
Node Allocations | 40367860 | 925075 | 524872 |
Total cycles | 88900524 | 2214275 | 1505722 |